Mild Myopathy Is Associated with COMP but Not MATN3 Mutations in Mouse Models of Genetic Skeletal Diseases

نویسندگان

  • Katarzyna A. Piróg
  • Yoshihisa Katakura
  • Aleksandr Mironov
  • Michael D. Briggs
چکیده

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type IX collagen gene mutations can result in multiple epiphyseal dysplasia that is associated with osteochondritis dissecans and a mild myopathy

Multiple epiphyseal dysplasia (MED) is a clinically variable and genetically heterogeneous disease that is characterized by mild short stature and early onset osteoarthritis. Autosomal dominant forms are caused by mutations in the genes that encode type IX collagen, cartilage oligomeric matrix protein, and matrilin-3: COL9A1, COL9A2, COL9A3, COMP, and MATN3, respectively. Splicing mutations hav...

متن کامل

Comparison of orthopaedic manifestations of multiple epiphyseal dysplasia caused by MATN3 versus COMP mutations: a case control study

BACKGROUND Multiple epiphyseal dysplasia (MED) is a relatively common skeletal dysplasia mainly involving the epiphyses of the long bones. However, it is a genetically heterogeneous group of diseases sharing certain aspects of the radiologic phenotype. In surveys conducted in East Asia, MATN3 was the most common causative gene, followed by COMP. In this study, the authors compared clinical mani...

متن کامل

Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures

Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM) in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological...

متن کامل

A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder disease with radiographic features often restricted to the epiphyses of the long bones. PSAC...

متن کامل

The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: The emerging role of endoplasmic reticulum stress (Review)

Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013